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Abstract –  

A critical aspect of BIM is the capability to 

embody semantic information about its element 

constituents. To be interoperable, such information 

needs to conform to the Industry Foundation Classes 

(IFC) standards and protocols. Artificial intelligence 

approaches have been explored as a way to verify the 

semantic integrity of BIM to IFC mappings by 

learning the geometric features of individual BIM 

elements. The authors through previous studies also 

investigated the use of geometric deep learning to 

automatically classify individual BIM element classes. 

However, such efforts were limited in the number of 

training data and restricted to subtypes of BIM 

elements. This study has significantly expanded the 

training set, to include a total of 46,746 elements 

representing 13 types of BIM elements. The 

magnitude of the data set is considered to be the first 

of this kind. Furthermore, Conditional Random 

Fields as Recurrent Neural Networks (CRF-RNN), a 

deep learning algorithm for semantic segmentation, 

was deployed to enhance the quality of individual 

input images. Deploying the dataset and segmentation 

improved the performance of previous model (Multi-

View CNN) by 4.37% and achieve an overall 

performance of 95.38%. 
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1 Introduction 

Building Information Modeling (BIM) has become 

the mainstream medium for integrating and 

disseminating information during the project life cycle of 

construction projects. Multiple stakeholders today 

employ a variety of specialized BIM tools tailored to 

their various needs in the design, engineering, and 

construction management of their projects.  

The Industrial Foundation Classes (IFC), a neutral 

and open data format, is a critical component in ensuring 

interoperability within the BIM centric work process. 

The absence of such a standard would require local data 

protocols for each and every pair of applications, quickly 

making BIM based project execution intractable.  

Working under the IFC protocol requires BIM 

elements, relationships, and their properties to be 

represented in conformance to its standards. However, 

due to the lack of logical rigidity of the IFC schema, IFC 

model instances are prone to misrepresentations and 

misinterpretations, resulting in a lack of semantic 

integrity [4].  

Such issues continue to be addressed in the domain of 

‘semantic enrichment’, which reasons about the relations 

and meaning implicit in the geometry and topology of 

BIM models to check and rectify semantic inaccuracies.  

In particular, a subset of these studies investigated 

ways to check the correct mapping of individual BIM 

elements to their corresponding IFC entities [1-3, 12, 16]. 

For example, [12] formalized sets of inference rules 

to check mappings, and subsequently automate 

inaccurate associations.  

More recently, artificial intelligence approaches have 

been employed as an alternate approach to check the 

integrity of BIM-element to IFC-entity mappings. This 

approach has been conducted by extracting geometric 

features existing in the IFC or using 2D image or 3D 

shape information of each element for learning model 

training. [3] conducted a study to classify space in the 

BIM model using geometric features-based machine 

learning, and demonstrated that the classification 

accuracy of machine learning approach was superior to 

the inference rule-based approach. [11] used images 

extracted from BIM models to classify building types, 

and [6] classified BIM furnishing elements using 2D 

CNN.  

The authors also explored the use of different 

machine learning and deep learning models to determine 

their applicability [7-9]. Mainly, we trained learning 

models based on the geometric features of individual 

BIM elements. In particular, we attained promising 

results from incorporating Multi-View CNN(MVCNN), 

a geometric deep learning model that learns from 

multiple panoramic images of a 3D artifact to learn and 

distinguish its shape [7].  
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However, despite its relative high performance, 

MVCNN still was limited in correctly classifying 

specific BIM elements despite their distinct geometric 

differences. The classification errors were attributed 

mainly to two factors. The first factor was the limited 

number of training data, as well as the imbalance in the 

number of samples per element class. Secondly, and 

more technically, was the lack of definition between the 

boundary of objects in the individual images, which 

made it difficult to detect the geometric detail of the 

elements. 

Commensurately, novel approaches were newly 

explored to rectify these limitations. First, the data set for 

training was increased by applying data augmentation 

based on parametric modeling. Secondly, as a data 

preprocessing step prior to training MVCNN, 

Conditional Random Fields as RNN (CRF-RNN), a deep 

learning-based semantic segmentation technique, was 

applied to sharpen the geometric features of the images 

for each and every BIM element. 

13 types of BIM elements with high utility in the 

architectural field were collected, and an expanded data 

set was constructed by performing data augmentation via 

parametric modeling. Afterward, the deep learning model 

was applied to the dataset to compare their performances. 

The first step was to learn the MVCNN algorithm, and 

the second step was to learn the MVCNN algorithm after 

applying semantic segmentation based on the CRF-RNN 

algorithm. Finally, by testing the two deep learning 

models on a BIM model excluded from the dataset, the 

classification performance of the developed model was 

compared to quantitatively verify the degree of 

performance improvement. 

2 Research Background 

2.1 Multi-View CNN (MVCNN) 

With the recent development of computing 

technology, it is possible to directly utilize 3D data, and 

object recognition research using a 3D model-based 

CNN algorithm is increasing. However, 3D raw data is 

very large in size to be directly applied to deep learning 

algorithms, so it must be accompanied by a lightweight 

process to reduce it to a size suitable for learning [13, 14, 

17]. Furthermore, the problem of performance 

degradation due to the loss of detailed features of objects 

in the lightweight process also makes it difficult to 

directly use the 3D CNN model.  

MVCNN, designed specifically to resolve this issue, 

has been proven to provide better performance than 

directly utilizing existing 3D data. MVCNN utilizes the 

multi-angled images of a 3D model, while using multiple 

CNN layers which in effect prevents loss of geometric 

details [15]. 

Figure 1 below shows the architecture of MVCNN. A 

3D object is rendered as 12 images taken panoramically.  

Each image is then input to individual Convolutional 

Neural Networks (𝐶𝑁𝑁1), which extracts compact shape 

descriptors representing the characteristics of each image. 

All extracted shape descriptors are reduced to one shape 

descriptor in the view-pooling layer, and they are 

transmitted to CNN ( 𝐶𝑁𝑁2 ) for final classification 

through the softmax classifier. Each CNN used in 

MVCNN utilized a VGG-M network composed of five 

convolution layers (𝐶𝑁𝑁1), two fully connected layers 

and, a softmax classification layer (𝐶𝑁𝑁2). 

 

 

Figure 1. Multi-view CNN for 3D Shape recognition 

[15] 

2.2 Conditional Random Field as Recurrent 

Neural Networks (CRF-RNN) 

2D image-based deep learning models such as 

MVCNN have a disadvantage that their performance is 

highly dependent on the resolution and sharpness level of 

the data. That is, to improve the classification 

performance of the learning model, it is necessary to 

collect high-quality image data for training or to improve 

the resolution and clarity of the previously collected 

images. Accordingly, this study aims to improve the 

classification performance of MVCNN models by 

applying semantic segmentation to images of individual 

elements collected. 

In this study, the CRF-RNN algorithm was used as a 

method for semantic segmentation. CRF (Conditional 

Random Field) refers to an undirected probabilistic graph 

model used for pattern recognition and structural 

prediction by labeling and segmenting consecutive pixels 

in an image. The simple CRF is composed of a lattice 

form in which adjacent nodes (pixels) in an image are 

connected by an edge, and due to this, exquisite 

segmentation was impossible during image segmentation. 

Accordingly, a Fully Connected CRF methodology that 

enables exquisite image segmentation by connecting all 

pixels of an image in pairs has been proposed, but there 

is a limitation in that the computation time is very long. 

Afterward, a method was devised to reduce the time 

required for label inference to 0.2 seconds by simplifying 

the complex structure by applying mean field 

approximation to the fully connected CRF.  

CRF-RNN is a method of reconstructing two models 
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into one framework based on a Recurrent Neural 

Network (RNN) to utilize weights output via CRFs with 

mean-field approximation as parameters in CNN learning. 

Due to this, it is possible to reduce the computation time 

and secure high semantic segmentation accuracy, and for 

this reason, it was adopted as a methodology for semantic 

segmentation in this study. 

 The formula below is the operating structure of the 

CRF-RNN algorithm for one iteration of the mean field. 

In the equation below, T denotes mean-field iteration, 

𝑄𝑖𝑛  and 𝑄𝑜𝑢𝑡  denote input and output according to

respective one average field iteration, and  𝑄𝑓𝑖𝑛𝑎𝑙 denotes

the final prediction result of CRF-RNN. 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑈) is 

the output value of the CNN operation, 𝑈 is the unary 

potential value, 𝑓𝜃(𝑈, 𝑄𝑖𝑛 , 𝐼)  is the weight inferred by

𝑄𝑖𝑛, 𝐼 is the image, and 𝜃 is the parameter of the CRF.

𝑄𝑖𝑛(𝑡) = {
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑈),   𝑡 = 0

𝑄𝑜𝑢𝑡(𝑡 − 1),    0 < 𝑡 ≤ 𝑇
 (1) 

𝑄𝑜𝑢𝑡(𝑡) = 𝑓𝜃(𝑈, 𝑄𝑖𝑛 , 𝐼),   0 ≤ 𝑡 ≤ 𝑇  (2) 

𝑄𝑓𝑖𝑛𝑎𝑙(𝑡) = {
0,    0 ≤ 𝑡 < 𝑇

𝑄𝑜𝑢𝑡(𝑡),    𝑡 = 𝑇
 (3) 

After integrating the structure into one deep neural 

network, end-to-end learning is possible by 

implementing a back propagation algorithm. Through 

this process, semantic segmentation was performed on 

panoramic 12 images for each element, and an example 

of the result is presented in figure 2. 

Figure 2. CRF-RNN-based semantic segmentation 

3 Research Methodology 

3.1 Parametric Modeling-based Data 

Augmentation 

 A goal of this study was to build a sufficiently large 

BIM element data set to train MVCNN. Ideally, BIM 

element samples need to be collected from open-source 

libraries or existing BIM models.  However, such 

avenues were limited due to copyright issues or lack of 

high-quality data from attainable BIM models. 

Thus, a data augmentation process that creates new 

data based on existing data was required. In this study, 

parametric modeling, an element technology of BIM was 

used. 

Parametric modeling applies the concept of an 

independent parent/child to the composition factors (line, 

point, spline, plane, etc.) of individual BIM elements and 

connects them in a mutually related structure [10]. In 

other words, by defining the dimensions of the element 

as parameters and expressing their relationship as a 

function, the user can convert it into a shape suitable for 

the purpose through parameter setting. Since the 

operating principle, range, and limit of the result are 

directly affected by the modeling method in this process, 

it is necessary to clearly set the shape control criteria [5]. 

To establish the shape control criteria in this research, 

13 types of major building elements were collected from 

four IFC standard building models and three online BIM 

libraries (KBIMS Library, NBS, bim object), and their 

shapes were investigated and analyzed. As a result, 45 

parameters and their ranges were extracted from 13 

elements, and the results are shown in Table 1. 

Subsequently, parametric modeling was performed using 

Revit Dynamo software based on the parameters. Figure 

3 shows an example of parametric modeling of a beam 

element using this method. 

Table 1. Parameters and range for each BIM element 

Element  Parameter Range(mm) 

Beam 

Width 250-600 

Height 400-1,100 

H (web width) 100-900 
B (flange width) 75-400 

Column 

Width 4-19 

Height 7-37 

H (web width) 200-1,000 
B (flange width) 200-1,200 

t1 (web thickness) 100-900 

t2 (flange thickness) 75-400 
Diameter 4-19 

Double door 

Width 7-37 

Height 500-1,000 
Frame width 1,800-2,400 

Panel thickness 1,800-2,400 

Opening width 40-60 

Single door 

Width 15-35 
Height 40-60 

Frame width 900-1,100 

Panel thickness 1,800-2,400 
Opening width 50-70 

Slab 
Width 20-40 

Length 90-110 

Covering 
Width 100-400 
Length 100-400 

Wall Length 3,000-11,000 

Window 
Width 800-1,800 
Height 900-1,600 
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Frame width 80-120 
Panel thickness 10-30 

Frame thickness 30-70 

Glass thickness 2-22 

Revolving 

door 

Width 1900-2,500 
Height 2100-2,800 

Opening width 500-2,000 

Curtain 

wall 

Length 12000-1,7000 
Height 4000-6,000 

Vertical grid 12,100-16,900 

Horizontal grid 4,100-5,900 

Stair flight, 
Member 

Shape 

U-shape with middle 
U-shape straight 

Straight with land 
Spiral 

L-shape winder 

U-shape winder 
Straight 

Type 

General 

Reinforced concrete 

Wood 
Metal 

Steel 

Stainless steel 
Aluminum 

Width 1,000-3,000 

Radius 1,200-1,500 
Step 3-10 

Railing Type 

Wood 

Metal 

Steel 

Stainless steel 

Glass 

Toughened glass 
*Stairs include stair flight, member, and railing, so when parametric 

modeling is applied to stairs, these elements are applied at the same 

time. 

 

 

Figure 3. Parametric modeling using Revit Dynamo 

The research team named the expanded data set built 

through this process ‘ArchShapesNet’, and released this 

data set in an open source form on the i3LAB homepage 

(http://i3l.seoultech.ac.kr) for other researchers to use. 

3.2 ArchShapesNet Overview 

12,672 elements of 13 types were collected from the 

four IFC standard architectural models (Table 2) and 

three BIM libraries mentioned in Section 3.2.  Parametric 

modeling-based data augmentation was then performed 

to finally construct the ‘ArchShapesNet’ data set 

consisting of 46,746 elements. The data distribution for 

each element is presented in Table 3. After constructing 

an element classification model by applying a deep 

learning algorithm to the constructed ArchShapesNet 

data set, the performance was verified for ‘Sejong city 

stadium’, which was not used for learning. 

Table 2. Five models for training and test 

IFC model Train/Test Image 

Office building 

Train 

 

Cultural and assembly 

facilities 

  

Educational research 

facilities 

  

Single house 

  

Sejong city stadium Test 

 

Table 3. Collected and augmented train data set status 

Type 
Beam Column Slab 

Original Augmented Original Augmented Original Augmented 

No. 

of element 
1,908 3,882 848 3,086 2,562 4,002 

Rendering 

   

Type 
Wall Window Stair flight 

Original Augmented Original Augmented Original Augmented 

No. 

of element 
3,731 4,917 781 3,353 140 5,407 

Rendering 

   

Type 
Member Railing Curtain Wall 

Original Augmented Original Augmented Original Augmented 

No. 

of element 
55 2,451 62 3,729 195 4,195 

Rendering 

   

Type 
Covering Single door Double door 

Original Augmented Original Augmented Original Augmented 

No. 

of element 
364 2,364 1,022 3,568 990 2,674 
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Rendering 

   
Type Revolving Door    

Original Augmented     

No. 

of element 
14 3,178     

Rendering 

 

    

3.3 Data Preparation for Deep Learning 

Implementation 

Each element in ArchShapesNet were rendered into 

panoramic 12 images for MVCNN training. 'KBIM 

Assess-Lite', an automatic IFC model checking software, 

was used for this conversion process. The images consist 

of 10 side images taken panoramically at 36° intervals 

and 2 images taken from top and bottom. 

Table 4 shows the data distribution for each element 

of the verification model (Sejong city stadium). In other 

words, model training is performed with the data 

constructed in Section 3.2, and the performance of the 

model is evaluated by testing the elements presented in 

this section. However, the verification model was 

composed of curtain walls without windows due to the 

characteristics of sports facilities, and the member and 

revolving door elements were not included, so 

verification of those elements were excluded. 

Table 4. Status of test data set (Sejong city stadium) 

Type No. of element 

Beam 164 

Column 171 

Slab 61 

Wall 308 

Window 0 

Stair flight 19 

Member 0 

Railing 24 

Curtain wall 63 

Covering 12 

Single door 19 

Double door 4 

Revolving door 0 

Total 845 

3.4 MVCNN Implementation 

Figure 4 shows the MVCNN model construction 

process using the panoramic 12 image data for each 

element. When the 12 images of individual elements pass 

through the neural network (𝐶𝑁𝑁1), the features of the 

elements in the image are extracted. Afterward, the 

features of each extracted image are integrated in the 

view-pooling layer, which is again passed through the 

secondary recurrent neural network (𝐶𝑁𝑁2). Here, 𝐶𝑁𝑁2 

is composed of the softmax layer, and through this, the 

classification results for individual elements are output. 

The MVCNN implementation utilized python-based 

Tensorflow, and through this, a first step learning model 

(baseline) for 13 building elements was established. 

 

 

Figure 4. MVCNN architecture 

3.5 CRF-RNN+MVCNN Implementation 

Figure 5 shows the second step MVCNN model 

learning process using images with improved clarity by 

applying semantic segmentation. In this step, the 

MVCNN model was trained after applying the CRF-

RNN algorithm so that the model can focus on the shape 

of the element by clearly dividing the region where the 

element exists. In this process, CRF-RNN was applied 

using python-based Keras, and a CRF-RNN+MVCNN 

model was built through the above-mentioned series of 

processes. 

 

 

Figure 5. CRF-RNN + MVCNN architecture 

4 Results 

Table 5 and Figure 6 below show the results of the 

MVCNN model validation based on the verification data 

presented in section 3.3. As a result of verification, the 

MVCNN model was confirmed to recognize and classify 

elements in the actual BIM model with an accuracy of 

91.01%. However, in the case of slab, covering, and stair 

flight elements, the classification accuracy were notably 
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lower than that of other elements. 

Table 5. Validation results (MVCNN) 

Element Precision Recall F1 score 
Accuracy 

(%) 

Beam 0.86 0.99 0.92 99.39 

Column 1.00 0.99 0.99 98.83 

Slab 0.77 0.33 0.46 32.79 

Wall 0.99 0.94 0.96 93.51 

Window - - - - 

Stair flight 0.88 0.79 0.83 78.95 

Member - - - - 

Railing 1.00 0.92 0.96 91.67 

Curtain wall 1.00 0.94 0.97 93.65 

Covering 0.11 0.83 0.20 83.33 

Single door 1.00 1.00 1.00 100.00 

Double door 1.00 1.00 1.00 100.00 

Revolving door - - - - 

Total 0.78 0.87 0.83 91.01 

 

Figure 4. Precision-recall curve (MVCNN) 

Table 6 and Figure 7 show the results of the CRF-

RNN+MVCNN model verification. This hybrid model 

recognized and classified elements in the actual BIM 

model with high accuracy of 95.38% and achieved 

overall accuracy of over 90%. The model has difficulty 

for slab elements, with an accuracy of 68.85%. Yet, it still 

retained a higher classification accuracy compared to the 

standalone MVCNN model. 

Table 6. Validation results (CRF-RNN + MVCNN) 

Element Precision Recall F1 score 
Accuracy 

(%)  

Beam 0.94 1.00 0.97 100.00 
Column 0.99 0.99 0.99 99.42 

Slab 0.88 0.69 0.77 68.85 

Wall 1.00 0.96 0.98 96.10 
Window - - - - 

Stair flight 1.00 0.95 0.97 94.74 

Member - - - - 
Railing 1.00 1.00 1.00 100.00 

Curtain wall 1.00 1.00 1.00 100.00 

Covering 0.12 0.50 0.19 50.00 
Single door 0.95 1.00 0.97 100.00 

Double door 0.80 1.00 0.89 100.00 

Revolving door - - - - 
Total 0.87 0.90 0.88 95.38 

 

Figure 7. Precision-recall curve (CRF-RNN + MVCNN) 

5 Discussion 

5.1 Discussion of the Results 

The ACC values of the previously presented 

MVCNN and CRF-RNN models were 91.01% and 

95.38%, respectively, and the 𝐹1 𝑠𝑐𝑜𝑟𝑒𝑠 were 0.83 and 

0.88, respectively. Through this, when CRF-RNN-based 

semantic segmentation was applied to the MVCNN 

learning process, the ACC improved by 4.37% and the 

𝐹1𝑠𝑐𝑜𝑟𝑒 improved by 0.05, so it was possible to confirm 

that applying semantic segmentation improved 

MVCNN’s ability to classifying the BIM elements.  

The 4.37% improvement is meaningful as the 

increase in accuracy resulted from specific elements that 

MVCNN by itself had trouble in distinguishing correctly. 

As shown in the confusion matrix (Table 7), the slab 

element, which was previously misclassified as either 

covering or beam, was classified properly, resulting in a 

significant ACC improvement. Moreover, the 

classification accuracy of elements with complex 

geometric features such as stair flight, railing, and curtain 

wall also increased. Thus, employing CRF-RNN to 

sharpen images was conducive to enhancing MVCNN’s 

most relevant shortcomings.  
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Table 7. Confusion matrix of delta values between 

MVCNN and CRF-RNN+ MVCNN  

5.2 Limitations  

 Although applying CRF-RNN-based semantic 

segmentation improved the classification accuracy, for 

elements of similar shapes, namely slabs and covering 

elements, were still misclassified. This is because many 

the two elements are indistinguishable in their shape, 

apart from their thickness.  So, it is difficult to distinguish 

them due to the characteristics of the MVCNN model, 

which considers only geometric shapes in the training 

process. When considering the two elements as a single 

type, the classification accuracy of the CRF-

RNN+MVCNN model increases to 98.22%. The higher 

value indicates that our model performs is competent in 

distinguishing geometric features of individual elements.  

Nevertheless, from a practical point of view, it is 

necessary to recognize slab and covering as separate 

elements when verifying the semantic integrity of 

architectural BIM models, thus improving this limitation 

is planned by adding additional attribute variables or 

utilizing relational information in conjunction with the 

learning process in the future. 

6 Conclusion 

This study aimed to construct a BIM element 

classifier using a 3D geometric deep learning algorithm 

and improve its performance by increasing the definition 

of individual images using semantic segmentation.   

ArchShapesNet, an expanded data set, was 

constructed by applying parametric modeling-based data 

augmentation so that learning for each element class was 

sufficiently performed, and CRF-RNN-based semantic 

segmentation was applied to properly reflect the 

geometric features of the BIM element in the learning 

process. As a result, the ACC of the MVCNN model 

applying CRF-RNN prior to the learning process was 

found to be high at 95.38%, which is a 4.37% 

improvement in ACC compared to the baseline MVCNN 

model. In detail, the classification accuracy of slab and 

elements with complex geometry was increased, and  

 

 

 

through this, it was confirmed that the application of 

CRF-RNN improved MVCNN performance. However, 

there was a limitation in that it was not possible to 

distinguish similar geometric shapes (slab and covering). 

Future works will be conducted to solve this issue 

through model training using additional property 

variables or relational information between elements that 

can distinguish between the two elements. 

Despite the limitation and future work, the results of 

this study are then encouraging as the test was performed 

on an entirely separate BIM model that was not used in 

the training. Whereas, existing studies conducted testing 

using a designated portion of the dataset, this study was 

more stringent in using a BIM model previously not seen 

by the deep learning models. ACC’s of 95.38% suggests 

that our model can be deployed to classify and check the 

classifications of newly created architectural BIM 

models, albeit it be for 13 elements trained in this study.  
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Window 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stairflight 0 0 1(▼3) 0 0 18(▲3) 0 0 0 0 0 0 0 19 

Member 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Railing 0 0 0 0(▼1) 0 0 0 24(▲2) 0 0(▼1) 0 0 0 24 

Curtainwall 0 0 0 0 0(▼4) 0 0 0 63(▲4) 0 0 0 0 63 

Covering 1 0 5(▲4) 0 0 0 0 0 0 6(▼4) 0 0 0 12 

Singledoor 0 0 0 0 0 0 0 0 0 0 19 0 0 19 

Doubledoor 0 0 0 0 0 0 0 0 0 0 0 4 0 4 

Revolvingdoor 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 175(▼15) 171(▲2) 48(▲22) 296(▲5) 0(▼4) 18(▲1) 0 24(▲2) 63(▲4) 25(▼19) 20(▲1) 5(▲1) 0 845 
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